• 1、已知集合A=x3<x<4B=x3<x<5 , 则x|4x<5=(       )
    A、ARB B、RAB C、RAB D、RAB
  • 2、如图所示,在直三棱柱ABCA1B1C1中,ACB=90AB=2BC=1AA1=3

    (1)证明:A1C平面AB1C1

    (2)若D是棱CC1的中点,在棱AB上是否存在一点E , 使DE∥平面AB1C1?证明你的结论.

  • 3、如图:在正方体ABCDA1B1C1D1AB=2MDD1的中点.

    (1)、求三棱锥MABC的体积;
    (2)、求证:BD1//平面AMC
    (3)、若NCC1的中点,求证:平面AMC//平面BND1.
  • 4、如图所示,我国黄海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C相距都为5公里,与小岛D相距为35公里.已知角A为钝角,且sinA=35

    (1)、求小岛A与小岛D之间的距离;
    (2)、记CDBαCBDβ , 求sin(2α+β)的值.
  • 5、在三棱锥PABC中,PC平面ABCPAC是等腰直角三角形,PA=6ABBCCHPB , 垂足为H,D为PA的中点,则当CDH的面积最大时,CB=.

  • 6、若e1,e2是夹角为60°的两个单位向量,则a=2e1+e2b=3e1+2e2的夹角大小为.
  • 7、如图,正方体ABCDA1B1C1D1的棱长为1,动点E在线段A1C1上,F、M分别是AD、CD的中点,则下列结论中正确的是(       )

    A、FM//A1C1 B、BM平面CC1F C、存在点E,使得平面BEF//平面CC1D1D D、三棱锥BCEF的体积为定值
  • 8、下列命题中的真命题是(       )
    A、若直线a不在平面α内,则a∥α B、若直线l上有无数个点不在平面α内,则l∥α C、若l∥α , 则直线l与平面α内任何一条直线都没有公共点 D、平行于同一平面的两直线可以相交
  • 9、“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等,如图,已知圆O的半径2,点P是圆O内的定点,且OP=2 , 弦AC,BD均过点P , 则下列说法错误的是(       )

       

    A、PAPC为定值 B、ACBD时,ABCD为定值 C、OAOC的取值范围是4,0 D、ACBD的最大值为12
  • 10、已知平面向量a=sinα,2b=cosα,1 , 若a//b , 则cos2α=(       )
    A、13 B、0 C、13 D、23
  • 11、在下列各组向量中,可以作为基底的是(       )
    A、e1=0,0e2=1,2 B、e1=1,2e2=5,2 C、e1=3,5e2=6,10 D、e1=2,3e2=2,3
  • 12、已知函数fx=Asinωx+φA>0,ω>0,φ<π的图象如图所示,点BDFfxx轴的交点,点CE分别为fx的最高点和最低点,而函数fx的相邻两条对称轴之间的距离为2 , 且其在x=12处取得最小值.

    (1)、求参数ωφ的值;
    (2)、若A=1 , 求向量2BCCD与向量CB+3CD的夹角;
    (3)、若点Pfx函数图象上的动点,当点PCE之间运动时,BPPF1恒成立,求A的取值范围.
  • 13、如图,平行四边形OADB的两条对角线相交于点C,点M,N满足BM=13BCCN=13CD , 设OA=aOB=b , 且b=3a

    (1)、用ab表示MN
    (2)、若MNAB , 求AOB
  • 14、已知向量a=2sinx,3cosxb=sinx,2sinx , 函数fx=ab
    (1)、求函数fx图象的对称轴;
    (2)、若f(x)<m10x0,π2上有解,求整数m的最小值.
  • 15、在①tanα=43 , ②7sin2α=83cosα , ③tanα2=32中任选一个条件,补充在下面问题中,并解决问题.

    已知0<β<α<π2 , _____,cosαβ=1314.

    (1)求sinα+5π6的值;

    (2)求β.

  • 16、已知向量a,b满足a+ba2b=6 , 且a=1b=2.
    (1)、求ab
    (2)、求ab的夹角θ
    (3)、求a+b.
  • 17、已知tanα2=12 , 求
    (1)、sinα,cosαtanα的值;
    (2)、sinαπ4
  • 18、如图,在△ABC中,ABC=60AB=3BC=4 , M是BC边上的中点,P是AM上一点,且满足BP=13BA+mBC , 则BPAM=.

  • 19、已知扇形的圆心角为120 , 弧长为π , 则该扇形的面积为
  • 20、将函数f(x)=sin12ωx(ω>0)图象上所有点的横坐标缩短到原来的12(纵坐标不变),再向左平移π4ω个单位长度,所得图象对应的函数为g(x) , 若g(x)[0,π]上有且仅有5个零点,则(       )
    A、g(x)=sin(ωx+π4) B、g(x)(0,π20)单调递增 C、ω的取值范围是[194,234) D、y=g(x)1(0,π)有且仅有3个零点
上一页 75 76 77 78 79 下一页 跳转