出卷网-试卷题库版本:
-
1、已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件需另投入2.7万元,设该公司年内共生产该品牌服装千件并全部销售完,销售收入为万元,且(注:年利润年销售收入年总成本)(1)、写出年利润(万元)关于年产量(千件)的函数解析式;(2)、求公司在这一品牌服装的生产中所获年利润最大时的年产量.
-
2、已知的内角A,B,C的对边分别为a,b,c,且(1)、求(2)、若 , 的面积为 , 求a的值.
-
3、在平面直角坐标系中,双曲线的左、右焦点分别为 , , P为双曲线C上一点.若当与x轴垂直时,有 , 则双曲线C的离心率为 .
-
4、已知平面内两定点和与一动点P(x,y),满足 , 若动点的轨迹为曲线 , 则下列关于曲线E的说法正确的是( )A、存在 , 使曲线过坐标原点; B、曲线关于轴对称,但不关于轴对称; C、若三点不共线,则周长最小值为; D、曲线上与不共线的任意一点关于原点对称的点为 , 则四边形的面积不大于.
-
5、在等差数列中,是的前项和,满足 , , 则有限项数列中,最大项和最小项分别为( )A、 B、 C、 D、
-
6、若 , 则的值为( )A、 B、 C、 D、
-
7、已知正方形的边长为1,设点M、N满足 , .若 , 则的最小值为( )A、2 B、1 C、 D、
-
8、已知集合 , 则( )A、 B、 C、 D、
-
9、如图,在三棱锥中,平面平面 , , 为BD的中点,是边长为1的等边三角形,且.(1)、求三棱锥的高;(2)、求直线CD和平面ABC所成角的正弦值;(3)、在棱AD上是否存在点 , 使二面角的大小为?若存在,并求出的值;若不存在,请说明理由.
-
10、已知圆C过 , , 且圆心C在x轴上.(1)、求圆C的标准方程;(2)、若直线过点 , 且被圆C截得的弦长为 , 求直线的方程;(3)、过点C且不与x轴重合的直线与圆C相交于M,N,O为坐标原点,直线 , 分别与直线相交于P,Q,记 , 面积为 , , 求的最大值.
-
11、已知 , 分别是椭圆C:()的左、右焦点,P为C上一点.(1)、若 , 点P的坐标为 , 求椭圆C的标准方程;(2)、若 , 的面积为4,求b的值.
-
12、如图,在长方体中, , , 点E在棱AB上移动.(1)、证明:;(2)、求平面的法向量.
-
13、如图,在四棱锥中,平面 , 底面是矩形, , , 是上的点,直线与平面所成角的正弦值为 , 则的长为.
-
14、若方程表示焦点在x轴上的椭圆,则实数k的取值范围为.
-
15、过圆的圆心且与直线垂直的直线方程为 .
-
16、如图,在棱长为2的正方体中,E为边AD的中点,点P为线段上的动点,设 , 则( )A、当时,EP//平面 B、当时,取得最小值,其值为 C、的最小值为 D、当平面CEP时,
-
17、已知椭圆的左、右焦点分别为 , , 点P在椭圆上,当的面积为1时,等于( )A、0 B、1 C、2 D、
-
18、已知直线与圆交于两点,且 , 则( )A、4 B、 C、2 D、
-
19、已知直线在x轴和y轴上的截距之和为1,则实数m的值是( ).A、-2 B、- C、 D、2
-
20、如图,在四棱锥中,底面 , 四边形是边长为1的菱形,且 , 则( )A、 B、 C、 D、