相关试卷

  • 1、如图,质量为0.2kg的小球A在水平力F作用下,与四分之一光滑圆弧形滑块B一起静止在地面上,小球球心跟圆弧圆心连线与竖直方向夹角θ=60°,g取10 m/s2。则以下说法正确的是(       )

    A、B对A的支持力大小为23N B、水平地面对B的摩擦力方向水平向右 C、增大夹角θ,若AB依然保持静止,F减小 D、增大夹角θ,若AB依然保持静止,地面对B的支持力减小
  • 2、如图甲所示,一辆小轿车从服务区匝道驶入平直高速行车道时速率为20m/s,想要加速驶入内车道,由于行车道前方匀速运动的大货车速度较小,影响超车。小轿车加速8s后放弃超车,立即减速,再经过3s,与大货车同速跟随,再伺机超车。该过程小轿车的速度与时间的关系如图乙所示,下列说法中正确的是(       )

    A、该过程小轿车的平均加速度大小为1.25m/s2 B、该过程小轿车的平均加速度大小为211m/s2 C、该过程小轿车与大货车之间的距离先减小后增大 D、该过程小轿车与大货车之间的距离先增大后减小
  • 3、马蹄灯是上世纪在中国生产并在民间广泛使用的一种照明工具。它以煤油作灯油,再配上一根灯芯,外面罩上玻璃罩子,以防止风将灯吹灭。当熄灭马蹄灯后,灯罩内空气温度逐渐降低,下列关于灯罩内原有空气的说法中正确的是(       )(设外界大气压恒定)

    A、所有气体分子运动的速率都减小 B、压强减小 C、体积不变 D、内能减小
  • 4、我国的东方超环(EAST)是研究可控核聚变反应的超大型科学实验装置。该装置需要将高速运动的离子变成中性粒子,没有被中性化的离子对实验装置有很大的破坏作用,因此需要利用“偏转系统”将其从粒子束中剥离出来。“偏转系统”的原理简图如图1所示,包含中性粒子和带电离子的混合粒子进入由一对平行带电极板构成的匀强电场区域,混合粒子进入电场时速度方向与极板平行,极板右侧存在匀强磁场区域。离子在电场磁场区域发生偏转,中性粒子继续沿原方向运动,到达接收器。已知离子带正电、电荷量为q,质量为m,速度为v,两极板间距为d。离子和中性粒子的重力可忽略不计,不考虑粒子间的相互作用。

    (1)两极板间不加电压,只利用磁场使离子发生偏转,若恰好所有离子均被图1中的吞噬板吞噬,求磁场的磁感应强度的大小B。

    (2)以下极板左端点为坐标原点建立坐标系,沿板建立x轴,垂直板建立y轴,如图1所示。假设离子在混合粒子束中是均匀分布的,单位时间内通过y轴单位长度进入电场的离子数为n。在两极板间加电压U,恰好所有离子均被吸附在下极板。

    a.求极板的长度L,并分析落在x轴上坐标为xx+Δx范围内的离子,进入电场时通过y轴的坐标范围。

    b.离子落在极板上的数量分布呈现一定的规律,若单位时间内落在下极板x位置附近单位长度上的离子数量为nx , 求nx随x变化的规律,在图2中作出nxx图像,说明图线与横轴所围面积的物理意义。(若Δx远小于x,则(x+Δx)2x2+2xΔx

  • 5、磁力刹车是为了保证过山车在最后进站时的安全而设计的一种刹车形式。在轨道之间设置较强的磁场,刹车金属片安装在过山车底部,该装置(俯视)可简化为如图所示的模型:水平导轨间距为L,刹车金属片等效为一根金属杆ab,整个回路的等效电阻为R。磁场区域为方向竖直向下的匀强磁场,磁感应强度的大小为B,过山车的总质量为m。过山车以速度v进入磁场区域,通过磁场区域后速度变为0.5v。磁力刹车阶段不计摩擦力和空气阻力。

    (1)求杆ab刚进入磁场区域时,受到的安培力F的大小和方向。

    (2)求过山车通过磁场区域的过程中,电路中产生的焦耳热Q。

    (3)求磁力刹车阶段过山车加速度大小a的变化范围。为使过山车加速度的大小不超过a0 , 磁感应强度的大小应满足什么条件?

  • 6、根据闭合电路的欧姆定律,电源电动势E和内阻r、路端电压U、电流I的关系为E=U+Ir。依据这一原理,甲同学用图1所示的电路测量电源的电动势和内阻。
    (1)、闭合开关前,应将滑动变阻器的滑片置于最端(选填“左”或“右”)。
    (2)、调节滑动变阻器的滑片,记录多组电压表和电流表的示数,在坐标纸上标出相应的数据点,作出U—I图线如图2所示。根据图线测得该电源的电动势E1=V,内电阻r1=Ω。(结果均保留2位有效数字)

    (3)、由于电表并非理想电表,导致(选填“电压”或“电流”)的测量存在系统误差。在图2上定性画出没有电表内阻影响的理想情况的U—I图线,画出图线与横纵坐标轴的交点。
    (4)、乙同学拆除电流表和滑动变阻器,直接读取电压表示数为E2。若电源的电动势为E,内阻为r。电流表、电压表的内电阻分别为RARV。根据图像和电路关系,仅从系统误差的角度来看,E1E2ErE1r1(均选填“<”“=”或“>”)。可知r1=(用电源和电表内阻表示)。
  • 7、“用单摆测量重力加速度的大小”的实验装置如图所示。

    (1)、用游标卡尺测量摆球直径如图所示,摆球直径d=mm。若测出摆线长l及单摆完成n次全振动所用的时间t,则重力加速度的大小,g=(用l、n、t、d表示)。
    (2)、改变摆长L,用多组实验数据作出T2L图像也可以求出重力加速度。如图所示,测得的数据点拟合后,在一条过原点的直线上,直线的斜率为k。由此可得重力加速度的大小.g=(用k表示)。

  • 8、如图所示,在“探究两个互成角度的力的合成规律”实验中,用手通过两个弹簧测力计共同拉动小圆环。小圆环静止时,由两个测力计的示数得到拉力F1F2的大小,此外还必须(        )

    A、记录小圆环的位置 B、记录两细线的方向 C、测量两细线的夹角 D、测量橡皮条的伸长量
  • 9、2023年诺贝尔物理学奖授予了“产生阿秒光脉冲的实验方法”。阿秒(as)是一个极短的时间单位,1as=1018s。阿秒光脉冲是一种发光持续时间在as量级的光脉冲,它相当于一个足够快的“快门”,帮助人们“拍摄”高速运动的电子,从而“打开电子世界的大门”。产生阿秒光脉冲的模型是:用强激光照射某些气体,由于激光的电场是交变电场,该电场的电场强度和原子内部的库仑场的强度相当时,电子就可能“电离”成为自由电子;电离后的自由电子在激光电场作用下“加速”;当激光的电场反向后,一些电子就有可能飞到被电离的原子附近并与其“复合”回到基态,同时释放出一个高能光子,其频率为入射强激光频率的整数倍,称为高次谐波光子。在适当的条件下,大量原子辐射出高次谐波叠加形成脉冲宽度为阿秒量级的光脉冲。根据上述信息并结合已有的知识,判断下列说法正确的是(  )
    A、在1阿秒的时间内,光前进的距离约为0.3mm B、电子复合时释放的光子能量等于电子在激光场中加速时获得的能量 C、电子的“电离”“加速”和“复合”将周期性地发生,时间间隔与激光电场的周期有关 D、强激光光子能量是高次谐波光子能量的整数倍
  • 10、如图所示,匀强电场和匀强磁场的方向均水平向右。一个正离子在某时刻速度的大小为v,方向与电场磁场方向夹角为θ。当速度方向与磁场不垂直时,可以将速度分解为平行于磁场方向的分量v1和垂直于磁场方向的分量v2来进行研究。不计离子重力,此后一段时间内,下列说法正确的是(       )

    A、离子受到的洛伦兹力变大 B、离子加速度的大小不变 C、电场力的瞬时功率不变 D、速度与电场方向的夹角θ变大
  • 11、如图1所示,长为R且不可伸长的轻绳一端固定在O点,另一端系一小球,使小球在竖直面内做圆周运动。由于阻力的影响,小球每次通过最高点时速度大小不同。测量小球经过最高点时速度的大小v、绳子拉力的大小F,作出F与v2的关系图线如图2所示。下列说法中正确的是(       )

    A、根据图线可以得出小球的质量m=aRb B、根据图线可以得出重力加速度g=aR C、绳长不变,用质量更小的球做实验,得到的图线斜率更大 D、用更长的绳做实验,得到的图线与横轴交点的位置不变
  • 12、研究光电效应现象的装置如图所示。图中K、A是密封在真空玻璃管中的两个电极,K极受到光照时能够发射电子。当用光子能量为2.82eV的光照射K极时,电流表的读数为30μA,移动滑动变阻器的滑片,当电压表的示数等于1V时,电流表读数为零,保持滑片位置不变。下列说法中正确的是(       )

    A、光电子的最大初动能为1.82eV B、K极材料的逸出功为1eV C、电流表的读数为30μA时,电压表的示数大于1V D、仅将电源正负极对调,电流表示数一定大于30μA
  • 13、如图所示,水平绝缘桌面上放着一个闭合铝环。绝缘材料制成的轻弹簧上端固定,下端悬挂一个磁铁,磁铁位于铝环中心上方。将磁铁下端N极向下拉,在其下降一定高度时由静止释放。此后,磁铁开始运动,铝环保持静止,弹簧始终在弹性限度内,不计空气阻力。则在磁铁向下的运动过程中(       )

    A、俯视看铝环中的电流沿顺时针方向 B、铝环对桌面的压力大于它的重力 C、磁铁运动过程中只受到两个力的作用 D、磁铁和弹簧组成的系统机械能守恒
  • 14、如图所示,点电荷Q周围的三个等势面是同心圆,等势面上的点A、B、C在同一条电场线上,且AB=BC。现将一电荷量为+q的试探电荷从A点由静止释放,试探电荷只受静电力作用,则(       )

    A、该电荷沿着电场线做匀加速直线运动 B、该电荷在AB段动能的增量小于BC段动能的增量 C、该电荷在AB段电势能的减少量大于BC段电势能的减少量 D、该电荷在AB段运动的时间小于BC段运动的时间
  • 15、2023年,我国首颗超低轨道实验卫星“乾坤一号”发射成功。“乾坤一号”是一颗绕地球做圆周运动的近地卫星。关于它的运动,下列说法正确的是(       )
    A、角速度大于地球自转的角速度 B、线速度大于地球的第一宇宙速度 C、线速度小于地球表面物体随地球自转的线速度 D、向心加速度小于地球表面的物体随地球自转的向心加速度
  • 16、如图所示,理想变压器原、副线圈匝数之比为10∶1,原线圈接220V的正弦交流电源,副线圈接R=55Ω的负载电阻,电流表、电压表均为理想电表。下列说法正确的是(       )

    A、电流表的示数为4.0A B、电压表的示数为31.1V C、若负载电阻的阻值减小,电压表的示数减小 D、若负载电阻的阻值减小,变压器的输入功率增大
  • 17、一列简谐横波沿x轴传播,在t=0时的波形如图所示。已知x=1m处的质点P的位移y随时间t变化的关系式为y=0.1sin5πtm。下列说法正确的是(       )

    A、这列波的波长λ=5m B、质点P此刻速度为零 C、这列波沿x轴负方向传播 D、这列波的波速为10m/s
  • 18、100年前,卢瑟福猜想在原子核内除质子外还存在着另一种粒子X,后来科学家用α粒子轰击铍核证实了这一猜想,该核反应方程为:24He+49Be612C+nmX , 则(       )
    A、m=1n=0 , X是中子 B、m=1n=0 , X是电子 C、m=0n=1 , X是中子 D、m=0n=1 , X是电子
  • 19、用激光照射金属挡板上的两条平行的狭缝,在挡板后面的屏上观察到明暗相间的条纹。这种现象属于光的(       )
    A、衍射现象 B、干涉现象 C、偏振现象 D、全反射现象
  • 20、天文学家范·艾伦发现在地球大气层之外存在着一个辐射带包裹着地球,这一辐射带被命名为“范·艾伦辐射带”,它是由于地球磁场捕获了大量带电粒子而形成,分为内层和外层,如图1所示。由于地球两极附近区域磁场强,其他区域磁场弱,当宇宙射线进入地磁场后会使带电粒子沿磁感线做螺线运动,遇到强磁场区域被反射回来,在地磁两极间来回“弹跳”,被“捕获”在地磁场中。不过还是有一些宇宙射线粒子可以“溜进”地球大气层,它们和空气分子的碰撞产生的辐射就形成了绚丽多彩的极光。大气中最主要的成分是氮和氧,波长557.7nm的绿色和630nm附近的红色极光主要由氧原子发出,波长高于640nm的红色极光由氮气分子发出。(计算时普朗克常量取h=6.6×1034Js , 真空中光速c取3×108m/s

    (1)a.求放出一个波长为630nm的红色光子时,氧原子的能量变化ΔE(结果取1位有效数字);

    b.请说明带电粒子和空气分子碰撞产生辐射的过程中能量是如何转化的。

    (2)图2所示的是质量为m、电荷量为q的带电粒子在具有轴对称性的非均匀磁场中做螺线运动的示意图,若将粒子沿轴线方向的分速度用v表示,与之垂直的平面内的分速度用v表示。

    a.某时刻带电粒子的v=v1v=v2 , 所在处磁感应强度大小为B,如果将粒子从此刻起在垂直平面内做圆周运动的一个周期时间内,所到达区域的磁场按匀强磁场(方向沿轴线)进行估算,求粒子在垂直平面内做圆周运动的半径r和在一个周期时间内沿轴线前进的距离(螺距)d;

    b.实际上带电粒子的半径和螺距都会不断变化,已知带电粒子在从弱磁场区向强磁场区运动的同时,在垂直平面内的速度v会变大,在此已知的基础上请用高中物理的知识解释为什么带电粒子在从弱磁场区向强磁场区螺旋前进时,分速度v会减小到零,并继而沿反方向前进。

上一页 12 13 14 15 16 下一页 跳转